首页> 外文OA文献 >Overlapping community detection in signed networks
【2h】

Overlapping community detection in signed networks

机译:在签名网络中重叠社区检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Complex networks considering both positive and negative links have gainedconsiderable attention during the past several years. Community detection isone of the main challenges for complex network analysis. Most of the existingalgorithms for community detection in a signed network aim at providing ahard-partition of the network where any node should belong to a community ornot. However, they cannot detect overlapping communities where a node isallowed to belong to multiple communities. The overlapping communities widelyexist in many real world networks. In this paper, we propose a signedprobabilistic mixture (SPM) model for overlapping community detection in signednetworks. Compared with the existing models, the advantages of our methodologyare (i) providing soft-partition solutions for signed networks; (ii) providingsoft-memberships of nodes. Experiments on a number of signed networks show thatour SPM model: (i) can identify assortative structures or disassortativestructures as the same as other state-of-the-art models; (ii) can detectoverlapping communities; (iii) outperform other state-of-the-art models atshedding light on the community detection in synthetic signed networks.
机译:在过去的几年中,同时考虑了积极和消极联系的复杂网络获得了相当大的关注。社区检测是复杂网络分析的主要挑战之一。签名网络中用于社区检测的大多数现有算法的目的在于提供网络的硬分区,其中任何节点都应不属于社区。但是,它们无法检测到允许一个节点属于多个社区的重叠社区。重叠的社区广泛存在于许多现实世界的网络中。在本文中,我们提出了一种用于签名网络中重叠社区检测的签名概率混合(SPM)模型。与现有模型相比,我们的方法的优点是:(i)为签名网络提供软分区解决方案; (ii)提供节点的软件成员资格。在许多带符号网络上进行的实验表明,我们的SPM模型:(i)可以与其他最新模型一样识别分类结构或非分类结构; (ii)可以检测重叠的社区; (iii)优于其他最新模型,这说明了合成签名网络中的社区检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号